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Temperature-induced developmental plasticity could allow amphibian larvae to complete 28 

metamorphosis successfully despite new thermal challenges and increased desiccation risk due 29 

to climate change. Here we investigated how the capacity for temperature-induced 30 

developmental plasticity varies with latitude and whether population-specific biogeographic 31 

background accounts for the different degree of plastic responses to temperature. We carried 32 

out a combined analysis based on the data from 150 studies (93 articles) performed on 64 33 

amphibian species. We collected empirical data for age and size at metamorphosis in amphibian 34 

larvae acclimated to different temperatures during development and found that all larvae from 35 

all populations in these studies revealed a change in metamorphic traits with a given change in 36 

temperature and thus, were able to exhibit temperature-induced developmental plasticity. Age 37 

at metamorphosis was more affected by temperature than size at metamorphosis. Age and size 38 

at the onset of metamorphosis were generally lowest at warmest temperatures during 39 

development. Furthermore, populations from tropical latitudes were less sensitive to a change 40 

in developmental temperature compared to populations from higher latitudes. Accordingly, we 41 

suggest tropical populations to be the most vulnerable to increasing temperatures during 42 

metamorphosis. Our analyses reveal biases with respect to taxonomy, biogeographic 43 

distribution of species, and study design. Data from tropical populations are underrepresented 44 

and thus, the capacity for developmental plasticity of the most threatened species probably 45 

remains poorly understood. Future studies should focus on under-represented regions, most 46 

threatened species, and include a broader range of temperatures during development in order to 47 

make robust projections on future sensitivity of populations to climate change. 48 

1. Introduction 49 

Environmental temperature is by far the most important abiotic factor for animals, as it has the 50 

largest impact on their distribution, ecology, and physiology (Angilletta, 2009; and references 51 

therein). This is particularly true for ectotherms since environmental temperature determines 52 

their body temperature, and therefore regulates the rates of all physiological and biochemical 53 

processes impacting growth, development, and metabolism (Hochachka and Somero, 1973, 54 

2002; Huey and Stevenson, 1979; Angilletta et al., 2002). Thus, the prospected rise in 55 

environmental mean temperatures, as well as the increasing frequency of heatwaves associated 56 

with global climate change (IPCC, 2021), pose a serious challenge to ectotherms (Daufresne et 57 

al., 2009; Verberk et al., 2021). Potential compensatory strategies to face the effects of global 58 

warming include behavioral thermoregulation (Kearney and Porter, 2009), evolutionary 59 

thermal adaptation (Huey et al., 2012), and/or exhibiting phenotypic plasticity (Gienapp et al., 60 
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2008). In relation to the rapid speed of ongoing climate change, behavioral responses are likely 61 

the fastest and most flexible option, followed by temperature-induced phenotypic plasticity, 62 

which could be favored if behavioral adjustments are hindered (Seebacher et al., 2015). 63 

In ectotherms with complex life cycles such as holometabolous insects, marine invertebrates, 64 

parasites, most teleost fish, and amphibians (Laudet, 2011), changing thermal conditions lead 65 

to a plastic response both in size and time at which they metamorphosize (i.e., plastic growth 66 

and developmental rate) (Wilbur, 1980; Denver and Middlemis-Maher, 2010; Kingsolver et al., 67 

2011). However, an increase in temperature influences development stronger than it influences 68 

growth (Angilletta and Dunham, 2003; Gomez-Mestre et al., 2010) and this leads to a reduced 69 

size at metamorphosis under higher temperatures. This temperature-induced developmental 70 

plasticity can be explained by the intraspecific ‘temperature-size rule’ (Atkinson, 1994). This 71 

rule predicts that ectothermic species reared at relatively higher temperatures display faster 72 

growth rates, but a shortened larval period, when compared with conspecifics reared at lower 73 

temperatures.  74 

Amphibians are especially sensitive to changing thermal conditions due to their highly 75 

permeable skin, their limited capacity for habitat selection (behavioral thermoregulation), and 76 

their complex life history (rev. in Navas et al., 2008). This is even more so in larval stages 77 

where they are likely to encounter higher variation in environmental temperature. Therefore, 78 

the timing of metamorphosis is of key importance for reducing mortality risk (Rudolph and 79 

Rödel, 2007) due to desiccation or temperature extremes. Several studies have demonstrated 80 

that amphibian larvae exhibit plasticity in age and size at metamorphosis as a response to 81 

variation in temperature (e.g., Merilä et al., 2000; Alvarez and Nicieza, 2002, Tejedo et al., 82 

2010; Yu et al., 2015; Ruthsatz et al., 2018b, 2020) following the temperature-size rule (rev. in 83 

Ruthsatz et al., 2018a). The capacity for temperature-induced developmental plasticity may 84 

provide a means for increasing fitness (Schlichting and Pigliucci, 1998; Boorse and Denver, 85 

2004). For example, traits such as a short larval period and/or a smaller body size at 86 

metamorphosis are hypothesized to confer greater fitness (Wilbur and Collins, 1973; Berven, 87 

1990; Beck and Congdon, 2000; Ruthsatz et al., 2019).  88 

In the light of declining amphibian populations worldwide (Stuart et al., 2004; Alroy, 2015; 89 

Green et al., 2020) and an increase in erratic weather conditions as a result of global warming, 90 

temperature-induced plasticity in physiological and morphological traits will be key for the 91 

continued survival of many amphibians (Barria and Bacigalupe, 2017). However, the capacity 92 

for temperature-induced plasticity might differ among species and populations (i.e., 93 
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phylogenetic contributions) and might be related to latitude and climate (i.e., thermal 94 

adaptation; rev. in Edge et al., 2016). Not all amphibians might be able to use temperature-95 

induced plasticity as a mechanism to cope with climate change. For example, tropical 96 

ectotherms are currently living very close to their optimal temperature and hence reveal reduced 97 

thermal safety margins (Deutsch et al., 2008). As predicted by the ‘climate variability 98 

hypothesis’ (Janzen 1967; Chown et al., 2004; Ghalambor et al., 2006),  plasticity in thermal 99 

tolerance exhibited by ectotherms such as amphibians is correlated with the magnitude of 100 

variation in environmental temperature (Addo-Bediako et al., 2000; Ghalambor et al., 2006; 101 

Bozinovic et al., 2011; but see Sørensen et al., 2016; Johansson et al., 2020) and increases as 102 

we move from the equator towards the poles (Janzen et al., 1967). This expected relationship is 103 

one of the several reasons (Gunderson  and Stillman, 2015) that tropical species are suggested 104 

to be at a higher risk from climate change (Tewksbury et al., 2008; Sunday et al., 2014; Pacifici 105 

et al., 2015), but empirical evidence is still limited and controversial. While phylogenetic and 106 

biogeographic patterns of plasticity in thermal tolerance have been well studied over the last 50 107 

years (e.g., Brattstrom, 1968; Duarte et al., 2012; Gunderson and Stillman, 2015; Morley et al., 108 

2019), comprehensive studies investigating factors determining the capacity for temperature-109 

induced developmental plasticity are still rare (rev. in Ruthsatz et al., 2018a).  110 

In this paper, we assessed the capacity for temperature-induced developmental plasticity in 111 

amphibian larvae and tested for abiotic correlates of this trait. We performed an extensive 112 

literature review and a combined analysis based on a total of 93 articles containing 1,154 113 

estimates of metamorphic traits from 64 species in 150 studies. Specifically, we investigated 114 

whether the latitude and/or the biogeographic background determines plasticity in metamorphic 115 

traits of a given population. Based on the climate variability hypothesis, we hypothesized that 116 

the capacity for temperature-induced developmental plasticity is the highest in species 117 

distributed at higher latitudes, as higher latitudes have strong seasonality with a wider climatic 118 

variation (Stevens, 1989; Calosi et al., 2010; Naya et al., 2011). Further, we quantitatively 119 

evaluated published research on temperature-induced developmental plasticity in amphibians. 120 

We hypothesized that the current knowledge on phenotypic plasticity in larval amphibians 121 

might be biased towards temperate regions since tropical regions, despite their high species 122 

richness and higher population declines, remain underrepresented in conservation research 123 

(Schiesari et al., 2007; Hansen et al., 2018; da Silva et al., 2020).  124 

2. Material and Methods 125 

2.1 Systematic literature review  126 
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We conducted a systematic literature review using ISI Web of Science (ISI WOS, 2021) in 127 

April 2021 (searched for: “TOPIC”; search term: ((amphibian* OR newt OR frog OR toad OR 128 

salamander OR anuran* OR caudate*) AND (larv* OR tadpole* OR metamorph*) AND 129 

(temperature OR temperature during development OR climate change OR global warming OR 130 

climat* shift OR abiotic OR biotic OR acidi* OR pH OR oxygen OR hypox* OR salinity OR 131 

road salt OR O2 OR stress* OR pollut* OR heavy metal* OR fertilizer* OR predator OR 132 

pesticide* OR herbicide* OR hormone* OR desiccation OR disease* OR invasive species OR 133 

infection* OR environmental stress*) AND (effect* OR impact* OR cause* OR affect*) AND 134 

(age OR size OR growth OR weight OR mass OR growth rate OR develop* OR larval time OR 135 

larval duration OR time to metamorphosis OR mortality OR thermal window OR tolera* OR 136 

limit* OR critic* OR lethal OR aerobic scope OR metabolic scope OR sensitivity OR 137 

metabolism OR SMR OR metabolic rate OR CTMAX OR standard metabolic rate OR 138 

performance OR energy budgets OR heart rate OR body condition OR development* window 139 

OR plasticity OR acclimation OR development*plasticity OR growth plasticity). Timespan: All 140 

years.) (Pullin and Stewart, 2006). The reference lists of selected papers were also searched for 141 

further studies. 142 

2.2 Data collection 143 

The following selection criteria had to be fulfilled by the experimental design of the included 144 

studies: (1) experiments were conducted in the laboratory (i.e., no field studies), (2) at least at 145 

two different temperatures during development for the larvae, and (3) food was provided ad 146 

libitum.  147 

We collected single data points (1154) for age (days after hatching to onset of 148 

metamorphosis), size, and growth rate (mg/day) at onset of metamorphosis from 93 published 149 

articles (Table S1). Size was measured by mass (mg), snout-vent length (SVL; mm), and/or 150 

total length (TL; mm) in respective studies.  The onset of metamorphosis was defined as the 151 

emerging of at least one forelimb according to Gosner developmental stage 42 (Gosner, 152 

1960). Furthermore, we obtained information on temperatures during development (i.e., tested 153 

temperature points) used in the respective studies as well as on variables representing 154 

sampling location as detailed as possible (i.e., GPS coordinates) and scientific classification 155 

according to the Linnean classification.  156 

Some of these articles performed different studies on e.g., different populations of one species 157 

or on different species. Therefore, data collection resulted in 150 studies from 93 articles. For 158 
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example, an article that tested the effect of two different temperatures during development on 159 

body mass of (a) Rana temporaria and (b) Bufo bufo was counted as one article, two studies, 160 

and four estimates/data points of body mass. All animals from one species sampled at the 161 

same location were considered as one population. 162 

For studies that use figures instead of tabularization of their results, we used Engauge Digitizer 163 

9.7 (Mitchell et al., 2021) to extract data from the graphs.  164 

2.3 Biogeographic background 165 

Sampling locations were assigned to latitudinal groups based on the absolute latitude (°N/S) 166 

and were categorized as either tropical (0–25°), sub-tropical (> 25–40°) or temperate (> 40-167 

53.55°; Morley et al., 2019). Data were excluded if measurements were taken from specimens 168 

bred artificially such as university or hospital laboratory breeding or pet trade to reduce 169 

confounding issues associated with artificial selective history (Bennett et al., 2018). 170 

Consequently, analyses testing the effect of population-specific biogeographic background if 171 

measurements were carried out on a reduced dataset (i.e., reduced dataset). 172 

For each sampling location, we extracted elevation (m) and 19 bioclimatic metrics related to 173 

temperature and precipitation (BioClim, WorldClim; Fick and Hijmans, 2017) for the time 174 

period of 1950 to 2000. The data were extracted, at a spatial resolution of 2.5 arc-min, using 175 

packages ‘raster’ and ‘sp’ in R (version 4.0.3; R Core Team, 2007).: Annual Mean Temperature 176 

(Bio1), Mean Diurnal Range (Bio 2), Isothermality (Bio 3), actual Temperature Seasonality 177 

(Bio 4), Maximum Temperature of Warmest Month (Bio 5), Minimum Temperature of Coldest 178 

Month (Bio 6), Annual Temperature Range (Bio 7), Mean Temperature of Wettest Quarter (Bio 179 

8), Mean Temperature of Driest Quarter (Bio 9), Mean Temperature of Warmest Quarter (Bio 180 

10), Mean Temperature of Coldest Quarter (Bio 11), Annual Precipitation (Bio 12), 181 

Precipitation of Wettest Month (Bio 13), Precipitation of Driest Month (Bio 14), Precipitation 182 

Seasonality (Bio 15), Precipitation of Wettest Quarter (Bio 16), Precipitation of Driest Quarter 183 

(Bio 17), Precipitation of Warmest Quarter (Bio 18), and Precipitation of Coldest Quarter (Bio 184 

19) at a scale of 1 km2 for each metric (Fick and Hijmans, 2017; Table S1).  185 

We used these macroclimatic data (i.e., air temperature) as a proxy to estimate the thermal 186 

adaptation in amphibian larvae because we had no access to microclimatic data (e.g., actual 187 

water temperatures in the breeding pond) from the original articles. As most amphibians breed 188 

in small or shallow bodies of water, we assumed that the temperature of these breeding ponds 189 
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might approximately equal average near-surface air temperature. Thus, the average near-surface 190 

air temperature provided by WorldClim is an appropriate estimate of the temperature of 191 

freshwater systems (Morley et al., 2019). Our study’s inferences consider the limitation 192 

imposed by using macroclimatic data because amphibian larvae inhabiting fluctuating 193 

microhabitats are benefited from microenvironments that filter environmental fluctuations 194 

(Woods et al., 2015; Oyamaguchi et al., 2018).  195 

2.4 Statistical analysis 196 

All statistical tests were performed in R (version 4.0.3; R Core Team, 2007). All plots were 197 

constructed using ggplot2 (Wickham, 2009) unless mentioned otherwise, and Adobe Illustrator 198 

2021. All independent variables were scaled before analyses with zero-mean standardization 199 

using the scale() function in R. 200 

2.4.1 Temperature effects on metamorphic traits and plasticity index (PIX) 201 

To determine the thermal reaction norm (i.e., sensitivity) of metamorphic traits (as measured 202 

by age, mass, SVL, TL, and growth rate) to temperature variation, we performed single linear 203 

regressions of temperatures during development (independent variable) and metamorphic traits 204 

(dependent variables) for each study included here (Fig. 1). Values for age, mass, SVL, TL, and 205 

growth rate were log-transformed to account for high levels of regression residuals. The slope 206 

of each regression describes the change in a metamorphic trait with a 1 °C change in 207 

temperatures during development and was used as a plasticity index (PIX) according to e.g., 208 

Claussen (1977), Gunderson and Stillman (2015), and Ruthsatz et al. (2018a, 2020). Linear 209 

regressions for each trait within the partial studies resulted in 399 data points for PIX (i.e., full 210 

dataset), which were included as replicates in statistical analyses (Table S1). PIX values 211 

indicate the sensitivity of growth and developmental rate to different temperatures during 212 

development, and thus, the ability for a plastic response in metamorphic traits. Higher absolute 213 

values of PIX correspond to higher plasticity (e.g., greater sensitivity of growth and/or 214 

developmental rate to temperature).  215 

2.4.2 Effect of biogeographic background on the capacity for temperature-induced 216 

developmental plasticity in amphibian larvae 217 

To examine the effect of population-specific biogeographic background (i.e., latitude, 218 

elevation, and thermal adaptation) on the capacity for temperature-induced developmental 219 

plasticity in amphibian larvae, data were analyzed using separate generalized linear mixed-220 
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effect models (GLMM). To account for possible phylogenetic effects of different species 221 

included in our dataset, we compared two methodological approaches for performing GLMMs: 222 

(1) the glmer() function (Bates et al., 2019) in the lme4 package (https ://cran.r-223 

project.org/package=lme4) using the categorical predictor ‘species’ as a random factor and (2) 224 

the MCMCglmm() function (Hadfield, 2010) in the MCMCglmm package (https ://cran.r-225 

project.org/package=MCMCglmm) using Markov Chain Monte Carlo sampling method for 226 

phylogenetic correction in R. Both GLMMs were performed with Gaussian distribution using 227 

the reduced dataset. The absolute plasticity indices for log-transformed age, mass, SVL, TL, 228 

and growth rate were used as dependent variables in separate models (Table 1). 229 

 230 

2.4.2.1 Predictor selection procedure 231 

Because many of the 19 bioclimatic variables are highly correlated, we first performed multiple 232 

Spearman’s rank correlations between all possible predictor variables (i.e., latitude, elevation, 233 

and bioclimatic variables). Using the caret package in R, we then removed all variables with a 234 

correlation of r > 0.55 and used the five least-correlated predictor variables  as fixed factors for 235 

our GLMMs, considering the random factor as specified above. Relationships between latitude 236 

and elevation on dependent variables as well as of latitude on retained bioclimatic variables 237 

were determined with multiple linear regressions (Fig. A1-A4).  238 

Differences in acclimation capacity between latitudinal groups (i.e., temperate, sub-tropical, 239 

and tropical) were analyzed by Kruskal-Wallis test and applying Bonferroni correction using 240 

the reduced dataset (Fig. 3D; Fig. A1).  241 

2.4.3 Phylogenetic effects on acclimation capacity in amphibian larvae 242 

We obtained phylogenetic relationships among amphibians from a previously published 243 

supertree (Pyron and Wiens, 2011) using the package PhyloOrchard 244 

(https://rdrr.io/rforge/PhyloOrchard/), and trimmed the tree to reduce it to taxa of our interest 245 

for each PIX variable using the package Ape (Paradis and Schliep, 2019) and Geiger (Pennell 246 

et al., 2014). We tested for the effect of phylogenetic non-independence by using these trimmed 247 

phylogenetic trees as random factors in addition to species identity for all PIX variables 248 

separately. We used the same models and fixed effects as the aforementioned GLMM runs to 249 

compare results and deduce the effect of phylogenetic relatedness on our inferences. We re-ran 250 

GLMMs using the Bayesian Markov Chain Monte Carlo (MCMC) sampling method 251 

ac
ce

pte
d m

an
us

cri
pt



9 
 

implemented in the package MCMCglmm (Hadfield, 2010) using the default priors given by 252 

the program and Gaussian distribution. MCMC estimation allows a better strategy to 253 

marginalize random effects such as phylogenetic non-independence and measurement errors 254 

(Hadfield, 2010) and effectively sample for posterior estimates from a large number of 255 

simulations (Gilks et al., 1995). Due to the low number of taxa for which PIX of Growth Rate 256 

(PIX  GR) and PIX of Total Length (PIX TL) were available, we did not carry out GLMMs 257 

with MCMC sampling for these dependent variables as the number of posterior estimates in the 258 

model would exceed the number of available data points. After identifying key factors that 259 

affect various PIX variables, we plotted the PIX value and other key fixed factors alongside the 260 

phylogenetic tree utilizing the package ggplot2 (Wickham, 2016) and ggtree (Yu et al., 2017). 261 

2.4.4 Biogeographic distribution of research in amphibian thermal biology 262 

The distribution of the geographic locations at which experimental populations were sampled 263 

was illustrated in a world map using GeoMapApp (version 3.6.12; Ryan et al., 2009; Fig. 4). 264 

The proportion of studies carried out on each continent or in each latitudinal group were 265 

calculated in percentage.  266 

3. Results 267 

3.1 Systematic literature review 268 

The systematic literature review returned 3,719 articles into an unfiltered reference library. 269 

After examining titles and abstracts, 717 articles were left as possibly relevant in the filtered 270 

reference library. Examining the full text of the filtered reference library led to 93 articles 271 

accepted in the reference library (Table S1). These articles were published between 1988 and 272 

2020 (with 50.7 % of the studies published during the past 10 years) and comprised 1,154 data 273 

points from 150 studies representing 137 amphibian populations (Table S1). These 137 274 

populations were from 64 species, 34 genera, 18 families, and 2 orders according to the Linnean 275 

classification. Temperatures during development ranged between 5.5 to 36 °C. The temperature 276 

range of the tests ranged between 1 and 18 °C. Sample sizes differ for independent variables 277 

age, mass, SVL, TL, and growth rate at metamorphosis because many studies do not include 278 

all of the five variables. 279 

3.2 Effect of temperature during development on age and size at the onset of 280 

metamorphosis 281 
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Age at metamorphosis decreased significantly in 99.1% of the studies (Table S1) and on 282 

average by 2.21 days with every 1 °C increase in temperature during development across all 283 

studies (P<0.001; Fig. 1A). The highest temperatures during development led to the youngest 284 

age and the lowest temperatures during development led to the oldest age at the onset of 285 

metamorphosis. SVL at the onset of metamorphosis decreased significantly in 66.6% of all 286 

studies with increasing temperature during development (P=0.002; Table S1; Fig. 1B). In 287 

contrast, TL at the onset of metamorphosis increased significantly in 51.7% of all studies with 288 

temperature during development (P<0.001; Table S1; Fig. 1C). SVL and TL at the onset of 289 

metamorphosis decreased and increased by 0.18 mm and 7.81 mm with every 1 °C increase in 290 

temperature during development across all studies, respectively. Neither log-transformed mass 291 

(P=0.761) nor growth rate (P=0.467) decreased or increased significantly with temperature 292 

during development  across all studies (Fig. 1DE). On study level, slopes of mass at 293 

metamorphosis revealed a decrease with increasing temperature during development  in 74.5% 294 

of the studies, whereas growth rate increased in 75.3% of the studies (Table S1). 295 

Fig. 1 The effect of temperature during development on values of A age (in days after hatching), 296 

B mass (in mg), C snout-vent length (SVL, in mm), D total length (in mm), and E growth rate 297 

(mg/day after hatching) at the onset of metamorphosis. Dots and respective regression lines 298 

refer to the individual studies. Statistics for log-transformed values and linear regressions. Black 299 

regression line shows the general effect of temperature during development on dependent 300 

variables of all included studies if regression is significant; dotted line for non-significant 301 

regressions. The color code refers to the latitudinal group of spawn collection site of the 302 

respective populations (see text for further details). Yellow = temperate group (>40°). Orange 303 

= sub-tropical zone (25-40°). Red = tropical zone (0-25°). N=112. 304 

The absolute PIX differed significantly between all metamorphic traits (Kruskal-Wallis test. 305 

H=158.033, df=4, N=400, P<0.001). The mean (± SD) absolute PIX was highest for growth 306 

rate (0.037 ± 0.03) and lowest in SVL (0.006 ± 0.00) across all partial studies (Fig 2). 307 

Fig. 2 Absolute plasticity index (PIX) of log-transformed values of growth rate (mg/day after 308 

hatching), age (in days after hatching), mass (in mg), total length (in mm), and snout-vent length 309 

(SVL, in mm) at the onset of metamorphosis sorted by mean value. The plasticity index 310 

describes the change in metamorphic traits with a given change in temperature during 311 

development . Box = 1st and 3rd quartiles with median. Whiskers = 1.5-fold interquartile range. 312 

Dots = outliers. Numbers = sample size (number of studies) per trait. N=399. 313 
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3.3 Effects of the population-specific biogeographic background on the PIX of age and 314 

size at metamorphosis 315 

After excluding the data derived from specimens bred artificially such as university or hospital 316 

laboratory breeding or pet trade to reduce confounding issues associated with artificial thermal 317 

adaptation, 383 data points remained in the reduced dataset for latitudinal analyses. Absolute 318 

latitude, elevation, Annual Temperature Range (Bio 7), Annual Precipitation (Bio 12), and 319 

Precipitation Seasonality (Bio 15) were retained as factors representing the population-specific 320 

biogeographic background from predictor selection procedure (Table A1; Fig. A1-A5). 321 

GLMMs revealed a significant increase in the capacity for temperature-induced developmental 322 

plasticity in age at the onset of metamorphosis (PIX age)  with absolute latitude (Fig. 3AC; 323 

Table 1), but PIX age did not significantly differ among latitudinal groups (Kruskal-Wallis test. 324 

H= 4.895, df=2, N= 112, P=0.086; Fig. 3D). However, R² (0.073) from linear regression shows 325 

that only a part of the variance was explained by latitude indicating that other factors might also 326 

be important for the capacity to respond plastically to temperature variation (Fig. 3C). The 327 

plasticity index of all other traits, however, was not correlated with latitude and did not 328 

significantly differ among latitudinal groups (Table 1; Kruskal-Wallis test. Mass: H= 2.838, 329 

df=2, N= 110, P=0.242; SVL: H= 0.145, df=2, N= 74, P=0.930; TL: H= 1.641, df=2, N= 25, 330 

P=0.440; growth rate: H= 2.408, df=1, N= 62, P=121; Fig. A1). No study included in our dataset 331 

measured growth rate in a tropical species at different temperatures during development . 332 

We built separate GLMMs for the absolute PIX of all traits (i.e., age, mass, SVL, TL, and 333 

growth rate at the onset of metamorphosis) from a combination of abiotic factors including 334 

latitude, elevation, and the bioclimatic predictors from predictor selection procedure  (Table 335 

A1).  336 

 Fig. 3 Absolute plasticity index (PIX) of age at metamorphosis  (green and blue shades) and A 337 

mean of absolute latitude of the source populations (°N/S) (latitude) of different species with 338 

their phylogenetic relationships, B mean of Annual Temperature Range of different species 339 

with their phylogenetic relationships, C as a function of absolute latitude of the source 340 

population (°N/S), D for three latitudinal groups (i.e., tropical, sub-tropical, and temperate) in 341 

amphibians, and E as a function of Annual Temperature Range (Bio 7). Black regression line 342 

for significant linear regressions; dotted line for non-significant regressions. The color code 343 

refers to the latitudinal group of spawn collection site of the respective populations (see text for 344 

further details). Yellow = temperate group (>40°). Orange = sub-tropical zone (25-40°). Red = 345 
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tropical zone (0-25°).Box = 1st and 3rd quartiles with median. Tree only includes species 346 

included in latitudinal analysis. Whiskers = 1.5‐fold interquartile range. Dots = single data. 347 

GLMMs revealed a significant decrease in the capacity for temperature-induced plasticity in 348 

age at metamorphosis (PIX age) with increasing Annual Temperature Range (Bio 7) (Table 1; 349 

Fig. 3B). However, R²  (0.003) from linear regression shows that only a part of the variance 350 

was explained by Annual Temperature Range (Bio 7) indicating that other factors might also 351 

be important for the capacity to respond plastically to temperature variation (Fig. 3E). None of 352 

the included bioclimatic variables explained PIX of SVL, mass, or growth rate (Table 1). The 353 

capacity for temperature-induced developmental plasticity in TL at the onset of metamorphosis 354 

was explained best by elevation and Annual Temperature Range (Bio 7)(Table 1; Fig. A4). The 355 

higher the Annual Temperature Range (Bio 7)), the lower is the capacity for temperature-356 

induced plasticity in TL at metamorphosis. Plasticity in TL at metamorphosis increased with 357 

elevation (Table 1; Fig. A4), whereas there was no effect of elevation on PIX of all other 358 

metamorphic traits (Fig. A3). 359 

Table 1. Generalized linear mixed models testing the effect of absolute latitude (°N/S). 360 

elevation (m.a.s.l.), and three bioclimatic parameters on the capacity for temperature-induced 361 

developmental plasticity in age and size at the onset of metamorphosis in amphibian larvae. 362 

Species was included in the models as random factor. Bio 7 = Annual Temperature Range. Bio 363 

12 = Annual Precipitation. Bio 15 =  Precipitation Seasonality. N for datapoints, n for number 364 

species. See text for further details.  365 

Dependent variable [N(n)] Fixed effects Estimate SE df t P 

PIX age 

[112(42)] 

Intercept 0.036 0.003 33.03 11.13 <0.001 

Latitude 0.011 0.003 78.30 3.24 0.001 

Elevation 0.002 0.002 55.47 1.24 0.219 

Bio 7 -0.006 0.002 66.45 -2.87 0.005 

Bio 12 -0.001 0.002 62.16 -0.49 0.622 

Bio 15 0.003 0.002 62.31 1.62 0.110 

PIX mass 

[110(39)] 

Intercept 0.021 0.002 13.33 9.14 <0.001 

Latitude -0.001 0.003 36.46 -0.47 0.641 

Elevation 0.001 0.002 49.21 0.56 0.578 

Bio 7 0.001 0.001 60.05 0.73 0.466 

Bio 12 -0.002 0.002 65.01 -0.98 0.330 

Bio 15 -0.003 0.002 71.72 -1.47 0.144 

PIX SVL 

[74(32)] 

Intercept 0.005 0.001 5.78 3.57 0.012 

Latitude -0.001 0.001 2.31 -0.35 0.726 

Elevation 0.000 0.001 1.95 0.35 0.725 

Bio 7 0.000 0.001 1.93 0.06 0.946 

Bio 12 0.001 0.001 3.58 0.93 0.355 

Bio 15 -0.001 0.001 4.68 -0.49 0.625 

PIX TL 

[25(6)] 

Intercept 0.015 0.003 19.00 4.31 <0.001 

Latitude -0.000 0.006 19.00 -0.05 0.958 

Elevation 0.020 0.009 19.00 2.26 0.035 
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Bio 7 -0.011 0.004 19.00 -2.17 0.042 

Bio 12 -0.005 0.006 19.00 -0.77 0.446 

Bio 15 -0.007 0.007 19.00 -0.95 0.35 

PIX growth rate 

[62(7)] 

Intercept 0.045 0.021 33.06 2.17 0.037 

Latitude -0.005 0.021 45.00 -0.26 0.796 

Elevation 0.019 0.029 55.11 0.64 0.522 

Bio 7 -0.016 0.011 53.95 -1.46 0.149 

Bio 12 -0.006 0.017 49.35 -0.40 0.691 

Bio 15 -0.001 0.021 36.57 -0.07 0.942 

3.4 Phylogenetic effects on acclimation capacity in amphibian larvae 366 

GLMMs carried out using the MCMC sampling approach where we account for phylogenetic 367 

non-independence produced similar results to the aforementioned GLMMs showing that 368 

phylogenetic relatedness among species included in this study does not have a clear effect on 369 

the plasticity indices of amphibian tadpoles. The PIX values for the age of metamorphosis (PIX 370 

age) increased with increase in elevation and decreased with increasing Annual Temperature 371 

Range (bio7) (see Fig. 3 and Supplementary tables S2-S4). No fixed effects had non-zero effects 372 

on other PIX variables (see Supplementary tables S2-S4). Visualization of posterior estimates 373 

of fixed effects and covariances estimated for random effects confirmed the convergence of 374 

MCMC chains in all the runs (see Supplementary tables S2-S4). In addition, histogram plots of 375 

posterior estimates of covariance for the two random factors – species identity and the 376 

phylogenetic tree - indicated that the phylogenetic relatedness does not have a significant effect 377 

on the value of PIX variables as the posterior estimates were close to 0 (see Supplementary 378 

Table S2-S4).   379 

3.5 Biogeographic and taxonomic distribution of research in amphibian thermal 380 

biology 381 

The dataset has a wide global spatial coverage (Fig. 4) including studies carried out on six 382 

continents and 25 countries (Table S1). All studies were carried out on the continent where the 383 

populations were sampled. Most studies were carried out in Europe (N=87 in 40 articles) and 384 

North America (N=29 in 26 articles), followed by Asia (N=16 in 16 articles), South America 385 

(N=12 in 7 articles), Australia (N=5 in 5 articles), and Africa (N=1 in 1 article). Thus, 386 

geographical data gaps exist, for example in Africa and large(r) parts of the Asian continent. 387 

Most studies were accordingly carried out in the temperate (58.6%) and sub-tropical zone 388 

(26%). Only 9.3% of the studies originated from the tropical zone highlighting the taxonomic 389 

mismatch and geographical bias since in the tropics species diversity is known to be greatest. 390 

Studies using amphibian populations from the temperate zone, investigated 20 different species, 391 

whereas only 14 different species were used in studies from the tropics. 30 different species 392 
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from sub-tropical populations were included in the dataset. 54.1% (N=72) of the populations 393 

were sampled in the temperate zone, whereas 28.5% (N=38) and 9.7% (N=13) of the 394 

populations were sampled in the sub-tropical and tropical zone, respectively. Most studies were 395 

carried out in the Northern Hemisphere (86.6% from 77 articles). Only 7.3% (from 9 articles) 396 

of the studies were carried out in the Southern Hemisphere. 7.5% of the studies and thus, 7 397 

articles were excluded from the analyses since these used animals from artificial breeding. 398 

Most studies (N=20) used the European common frog (Rana temporaria; Table S1). European 399 

water frogs (Pelophylax spp.) were used as study species in 7 studies as well as the wood frog 400 

(Lithobates sylvaticus). Four studies used the striped marsh frog (Limnodynastes peronii). All 401 

other species were used in less than three studies. The three most studied species in our dataset 402 

are also among the ten most studied amphibian species for conservation as recently published 403 

by da Silva et al. (2020). Most studies were carried out using anurans (95.3%), whereas only 404 

4.7% of the studies investigated caudates. 405 

Fig. 4. A world map illustrating the geographic locations at which experimental populations 406 

were sampled. Points are colored according to the geographic zone in which the sampling 407 

locations belong. Yellow = temperate zone (>40°). Orange = sub-tropical zone (25-40°). Red = 408 

tropical zone (0-25°). Bar charts = Percentage of studies carried out on each continent. Frogs = 409 

Number of different species used in each latitudinal group/percentage of studies carried out in 410 

respective climate one. Figure made with GeoMapApp (www.geomapapp.org) / CC BY. 411 

4. Discussion 412 

Temperature-induced developmental plasticity could allow amphibian larvae to complete 413 

metamorphosis successfully despite new thermal challenges and increased desiccation risk due 414 

to climate change. Here, we collected empirical data for age and size of amphibian larvae at 415 

metamorphosis that are acclimated to different temperatures during development, in order to 416 

determine the population-specific capacity for temperature-induced plasticity. We found that 417 

larvae from 137 populations experience a change in metamorphic traits with change in 418 

temperatures during development and thus, were able to exhibit temperature-induced 419 

developmental plasticity. Our key findings suggest that age at metamorphosis seems to be much 420 

more affected by temperature than size at metamorphosis. Furthermore, we identified that 421 

tropical amphibian populations are the most vulnerable to increasing temperatures during 422 

metamorphosis because their metamorphic traits are less sensitive to changing temperatures 423 

during development compared to populations from higher latitudes. However, this study also 424 
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detected that data on tropical populations are few and thus, the capacity for developmental 425 

plasticity in most of the tropical amphibians remains to be thoroughly investigated.  426 

4.1 Thermal effects are consistent on age but not on size at metamorphosis across amphibian 427 

populations 428 

For most ectothermic species with complex life cycles, the relationship between temperature, 429 

development, and growth is well defined by the temperature-size rule. It states that the body 430 

size of larvae that metamorphosize in warmer conditions is smaller, despite their initial fast 431 

growth rate (Atkinson, 1994; Verberk et al., 2021). Our results confirm this pattern for the 432 

majority of tested populations. We found that age and size at the onset of metamorphosis are 433 

generally the lowest at the warmest temperatures during development and the highest at the 434 

coldest temperatures during development. In our analysis, age at the onset of metamorphosis 435 

was lower at warmer developmental temperatures in 99.1% of the studied populations. These 436 

results indicate that developmental rate responds plastically to temperature variation 437 

independent of respective thermal background Further, developmental rate turned out to be 438 

more plastic than growth rate as age at metamorphosis was more affected by temperature than 439 

size at metamorphosis. This is due to the accelerating effect of increasing temperature on 440 

physiological and biochemical processes in general and on the endocrine mechanisms that 441 

regulate amphibian metamorphosis (Smith-Gill and Berven, 1979; Angilletta, 2009; Little and 442 

Seebacher, 2016). Thyroid hormones (TH), which are the major triggers of amphibian 443 

metamorphosis (Shi 2000), are more effective at higher temperatures (Ruthsatz et al., 2018b; 444 

2020). Further, environmental temperature variation can proximately cause stress which alters 445 

the hormonal balance of amphibian larvae by activating the neuroendocrine stress axis (Navas 446 

et al., 2017). Stress hormones are known to synergize with THs (Glennemeier and Denver, 447 

2002a,b,c; Kulkarni and Buchholz, 2012) and thus, mediate temperature-induced 448 

developmental plasticity (Denver, 2021). This impact of environmental temperature on the 449 

endocrine pathways is independent of the genetic thermal adaptation of a population, which is 450 

in line with the present results on age at metamorphosis. 451 

 452 

In contrast to age, no consistent decrease at warmer temperatures was observed in mass, TL, or 453 

SVL at the onset of metamorphosis, suggesting that size is not only explained by environmental 454 

factors such as temperature. This is in line with findings of Lesbarreres et al. (2007), who 455 

demonstrated that genetic variability rather than environmental factors predicted size at 456 

metamorphosis in the European common frog (Rana temporaria). Nevertheless, growth rate is 457 
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likewise accelerated at higher temperatures due to thermal effects on physiological and 458 

biochemical processes (Smith-Gill and Berven, 1979; Angilletta, 2009; Little and Seebacher, 459 

2016). In our analysis, growth rate was higher at warmer developmental temperatures in 75.3% 460 

of the studied populations, indicating that growth rate responds plastically to temperature 461 

variation but is not significantly higher or lower than developmental rate. In general, growth 462 

rate is suggested to be less sensitive to temperature variation than developmental rate (Gomez-463 

Mestre et al., 2010) since the thermal effect on THs favors developmental rate more than growth 464 

rate (Shi. 2000). This could result in the decoupling of both rates to some extent (Forster and 465 

Hirst. 2012), resulting in a larger impact on age than size at metamorphosis. The high degree 466 

of temperature-induced plasticity in growth rate in the present study could be associated and 467 

thus be biased to some extent, with the large number of studies included using R. temporaria, 468 

a species which is known to react more plastically to thermal variability than other amphibians 469 

(Laurila and Kujasalo, 1999; Ruthsatz et al., 2020). Accounting for phylogenetic relatedness 470 

yielded similar results showing that the elevation and Annual Temperature Range (bio7) had 471 

clear positive and negative effects on the PIX of age at metamorphosis (PIX age) 472 

(Supplementary Table S2). Despite the high intraspecific variation in PIX, we see that the 473 

species identity used as a random factor relatively predicts PIX age better than the phylogeny 474 

indicating that there is a lack of or a poor phylogenetic signal for PIX variables (see 475 

Supplementary Table S2). However, we did not measure phylogenetic signal per se because 476 

measures of phylogenetic signals are sensitive to non-random distribution of missing taxa on a 477 

phylogenetic tree, in addition to branch length information that is not often accurate when 478 

extracted from super trees. Together these factors can lead to misinterpretation of ecological 479 

and evolutionary processes (Münkemüller et al., 2012; Molina-Venegas and Rodríguez, 2017). 480 

In light of this, plasticity index data on more species sampled randomly across the amphibian 481 

tree could provide a better understanding of phylogenetic signal for plasticity in species' 482 

physiological traits.  483 

The capacity for a temperature-induced plastic response in developmental and growth rate is 484 

adaptive in heterogeneous environments (Newman, 1992) but also results in different ages and 485 

sizes of larvae at metamorphosis. The age and size of larvae at metamorphosis are effective 486 

predictors of (future) fitness in amphibians (Smith, 1987; Beck and Congdon, 2000; Boone et 487 

al., 2001; Ruthsatz et al., 2019; but not: Semlitsch et al., 1988; Earl and Whiteman, 2015). 488 

Generally, being younger and larger at metamorphosis was found to be advantageous, because 489 

the individual will be more likely to survive to maturity (Berven, 1990). It has therefore been 490 

suggested that individuals that metamorphose at a smaller size (i.e., due to higher water 491 
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temperatures in ponds) may benefit from an earlier escape from desiccation risk in their larval 492 

habitats but may also incur costs such as reduced juvenile survivorship (Smith, 1987; Semlitsch 493 

et al., 1988; Berven, 1990; Ruthsatz et al. 2019). However, there is a growing body of literature 494 

providing broad support that shrinking body sizes in ectotherms such as amphibians in response 495 

to global warming might be beneficial at all life-stages. In small individuals, the risks of oxygen 496 

(Verberk et al., 2021) as well as of food limitation are reduced and so is competition (Ohlberger, 497 

2013; Van Buskirk et al., 2017; Rollins and Benard, 2020). Also, acclimation of metabolic rate 498 

and thermal tolerance is faster in smaller individuals than in larger individuals (Rohr et al., 499 

2018). Thus, climate change poses a selection pressure that favors the capacity for temperature-500 

induced plasticity in amphibian larvae. Nevertheless, there are no studies so far demonstrating 501 

that plasticity in general and in developmental rate actually increases fitness. Since little is 502 

known generally about phenotypic plasticity in the wild (Loman, 2002), further studies are 503 

required to investigate how a plastic response in developmental and growth rate affects fitness 504 

in later life stages. 505 

4.2 Population-specific biogeographic background affects thermal sensitivity of metamorphic 506 

traits 507 

In this study, we also investigated whether the population-specific biogeographic background 508 

(e.g., latitude and associated thermal adaptation) accounts for the different degrees of plastic 509 

responses in metamorphic traits to temperature. Along with a previous study on anuran larvae 510 

(Ruthsatz et al., 2018a), the present study is the first to investigate temperature-induced 511 

developmental plasticity patterns across latitude and associated thermal adaptation. We found 512 

that the population-specific biogeographic background impacts the sensitivity of age and/or size 513 

at the onset of metamorphosis to temperature variation and thus, requires the capacity for a 514 

plastic response in developmental and growth rate.  515 

In our analysis, the effects of the population-specific biogeographic background on the thermal 516 

sensitivity of metamorphic traits were more consistent for age than for size at metamorphosis. 517 

We found that populations from tropical latitudes show lower plasticity indices for age at 518 

metamorphosis. Therefore, populations from colder climates with high precipitation, such as 519 

temperate amphibians, are more likely to respond plastically in developmental rate to 520 

temperature variation. In contrast, populations adapted to warmer climates with lower 521 

precipitation revealed a lower sensitivity of age to temperature variation indicating lower 522 

developmental plasticity (temperature-induced). Less plastic physiological traits are common 523 
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in ectotherm populations from tropical climates due to the relatively stable thermal 524 

environments in the tropics (e.g., Janzen, 1967; Addo-Bediako et al., 2000; Somero, 2005; 525 

Ghalambor et al., 2006; Calosi et al., 2007; Bozinovic et al., 2011). In particular, the plasticity 526 

of thermal tolerance is well known to increase in populations found toward higher latitudes due 527 

to pronounced thermal seasonality (Calosi et al., 2010; Naya et al., 2011; Sunday et al., 2011; 528 

but not: Sorensen et al., 2016). As temperate populations experience more heterogenous thermal 529 

environments during their larval stage, selection favors a high sensitivity of developmental rate 530 

due to temperature variation resulting in a high capacity for a plastic response in both rates 531 

(Seebacher et al., 2015). We consequently identify populations from tropical latitudes as the 532 

most vulnerable to increasing temperatures during metamorphosis. However, temperature-533 

induced developmental plasticity might have a greater potential to buffer the effects of global 534 

warming on amphibian larvae from all latitudes than plasticity in thermal tolerance (Sunday et 535 

al., 2014; Gunderson and Stillman, 2015; Barria and Bacigalupe, 2017). 536 

4.3 Concluding remarks: Evidence of biogeographic, methodological, and taxonomic biases in 537 

thermal biology research and their consequences for predicting amphibian sensitivity to 538 

climate change 539 

As the magnitude and speed of climate change accelerate (Mahlstein et al., 2013), there is a 540 

considerable interest in evaluating how different amphibian species and populations will cope 541 

with new thermal challenges. There is a growing body of research investigating mechanisms 542 

underlying responses of populations, and associated life history evolution as a result of 543 

changing climate (rev. in Lowe et al., 2021). This trend has greatly increased our knowledge 544 

on the potential of temperature-induced phenotypic plasticity and will contribute to identifying 545 

the world’s most climate change vulnerable populations. Our effort considered populations 546 

from tropical latitudes as the most vulnerable to increasing temperatures during metamorphosis 547 

since metamorphic traits were less sensitive to changing temperatures during development    548 

compared to populations from higher latitudes. Nevertheless, our analyses reveal biases with 549 

respect to taxonomy, biogeographic distribution of species, and study design making global 550 

conclusions impossible. In our analysis, most studies were conducted in Europe and North 551 

America and used species that are common, widely distributed, or easily obtainable by 552 

researchers. This is a commonly found pattern in conservation research (Pawar, 2003; Schiesari 553 

et al., 2007; Winter et al., 2016; da Silva et al., 2020). The geographical bias is at least partially 554 

responsible for a taxonomic bias (Winter et al., 2016) since information gaps exist for Africa, 555 

Asia, and South America; these are the very regions where the vast majority of global 556 
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biodiversity hotspots are located (Mittermeier et al., 2011). Most threatened species occur in 557 

these tropical regions, but also in countries with little investment in research (King, 2004). 558 

Given the geographic differences in thermal sensitivity during metamorphosis that we have 559 

detected despite low data from the tropics, we predict that an increase in studies on additional 560 

tropical species could reveal greater risks. On the other hand, these additional studies will be 561 

key in improving current predictions of biodiversity survival due to climate change and global 562 

warming (Button and Borzée, 2021). Furthermore, most studies investigating the effect of 563 

temperature on metamorphic traits use only 2–3 constant temperatures during development. 564 

This methodical approach is insufficient to resolve the capacity for developmental plasticity 565 

within the population-specific thermal tolerance (Kingsolver and Huey, 2008). Additional 566 

research must focus on geographically under-represented regions, taxonomically under-567 

represented groups, species of higher conservation significance, and include a broader range of 568 

temperatures during development in order to obtain robust interpretations on amphibian 569 

survival in the light of accelerating global warming. 570 
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11. Appendix 840 

Table A1. Correlation coefficients between absolute latitude (°N/S), elevation (m.a.s.l.), elevation, and bioclimatic predictor variables for all sampling 841 

sites included in this study. Bold for correlation coefficients >0.55. Bio 1 = Annual Mean Temperature. Bio 2= Mean Diurnal Range. Bio 3 = 842 

Isothermality. Bio 4 = Temperature Seasonality. Bio 5 = Maximum Temperature of Warmest Month. Bio 6 = Minimum Temperature of Coldest 843 

Month. Bio 7 = Annual Temperature Range. Bio 8 = Mean Temperature of Wettest Quarter. Bio 9 = Mean Temperature of Driest Quarter. Bio 10 = 844 

Mean Temperature of Warmest Quarter. Bio 11 = Mean Temperature of Coldest Quarter. Bio 12 = Annual Precipitation. Bio 13 = Precipitation of 845 

Wettest Month. Bio 14 = Precipitation of Driest Month. Bio 15 = Precipitation Seasonality. Bio 16 = Precipitation of Wettest Quarter. Bio 17 = 846 

Precipitation of Driest Quarter. Bio 18 = Precipitation of Warmest Quarter. Bio 19 = Precipitation of Coldest Quarter. 847 
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Fig. A1. Absolute plasticity index (PIX) for mass, SVL, TL, and growth rate at the onset of 

metamorphosis as ABCD a function of absolute latitude of the source population (°N/S) 

and EFGH for three latitudinal groups (i.e. temperate, sub-tropical, and tropical) in 
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amphibians.  Regression line shows the general effect of absolute latitude on dependent 

variables if regression is significant; dotted line for non-significant regressions. Box = 1st 

and 3rd quartiles with median. Whiskers = 1.5‐fold interquartile range. Dots = outliers. 

Color code for latitudinal groups; yellow = temperate, orange = sub-tropical, and red = 

tropical.
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Fig. A2. Annual Temperature Range (Bio 7), Annual Precipitation (Bio 12), and Precipitation 

Seasonality (Bio 15) as a function of absolute latitude of the source population (°N/S). Black 

regression line shows the general effect of absolute latitude on dependent variables if regression 

is significant. Color code for latitudinal groups; yellow = temperate, orange = sub-tropical, and 

red = tropical.
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Fig. A3.Absolute plasticity index (PIX) for A age, B mass, C SVL, and D growth rate at the 

onset of metamorphosis as a function of absolute elevation of the source population (m.a.s.l.) 

in amphibians. Regression line shows the general effect of elevation on dependent variables if 

regression is significant; dotted line for non-significant regressions.  Color code for latitudinal 

groups; yellow = temperate, orange = sub-tropical, and red = tropical.
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Fig. A4.Absolute plasticity index (PIX) for TL  the onset of metamorphosis as a function of A 

Annual Temperature Range and B of absolute elevation of the source population (m.a.s.l.) in 

amphibians. Regression line shows the general effect of elevation on dependent variables if 

regression is significant; dotted line for non-significant regressions.  Color code for latitudinal 

groups; yellow = temperate, orange = sub-tropical, and red = tropical.
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Fig.  A5 Absolute plasticity index (PIX) for age, mass, SVL, TL, and growth rate at the onset 

of metamorphosis in different species and absolute latitude of the source populations (°N/S). 

The phylogenetic tree shows the taxonomic relationships among species included in this study.
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13. Figure legends 

Fig. 1 The effect of temperatures during development on values of A age (in days after 

hatching), B mass (in mg), C snout-vent length (SVL, in mm), D total length (in mm), and E 

growth rate (mg/day after hatching) at the onset of metamorphosis. Dots and respective 

regression lines refer to the individual studies. Statistics for log-transformed values and linear 

regressions. Black regression line shows the general effect of temperatures during development 

on dependent variables of all included studies if regression is significant; dotted line for non-

significant regressions. The color code refers to the latitudinal group of spawn collection site 
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of the respective populations (see text for further details). Yellow = temperate group (>40°). 

Orange = sub-tropical zone (25-40°). Red = tropical zone (0-25°). 

Fig. 2 Absolute plasticity index (PIX) of log-transformed values of growth rate (mg/day after 

hatching), age (in days after hatching), mass (in mg), total length (in mm), and snout-vent length 

(SVL, in mm) at the onset of metamorphosis sorted by mean value. The plasticity index 

describes the change in metamorphic traits with a given change in temperatures during 

development. Box = 1st and 3rd quartiles with median. Whiskers = 1.5-fold interquartile range. 

Dots = outliers. Numbers = sample size (number of studies) per trait. N=399.
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Fig. 3 Absolute plasticity index (PIX) of age at metamorphosis  (green and blue shades) and A 

mean of absolute latitude of the source populations (°N/S) (latitude) of different species with 

their phylogenetic relationships, B mean of Annual Temperature Range of different species 

with their phylogenetic relationships, C as a function of absolute latitude of the source 

population (°N/S), D for three latitudinal groups (i.e., tropical, sub-tropical, and temperate) in 

amphibians, and E as a function of Annual Temperature Range (Bio 7). Black regression line 

for significant linear regressions; dotted line for non-significant regressions. The color code 

refers to the latitudinal group of spawn collection site of the respective populations (see text for 

further details). Yellow = temperate group (>40°). Orange = sub-tropical zone (25-40°). Red = 

tropical zone (0-25°).Box = 1st and 3rd quartiles with median. Tree only includes species 

included in latitudinal analysis. Whiskers = 1.5‐fold interquartile range. Dots = single data. 
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Fig. 4. A world map illustrating the geographic locations at which experimental populations 1 

were sampled. Points are colored according to the geographic zone in which the sampling 2 

locations belong. Yellow = temperate zone (>40°). Orange = sub-tropical zone (25-40°). Red = 3 

tropical zone (0-25°). Bar charts = Percentage of studies carried out on each continent. Frogs = 4 

Number of different species used in each latitudinal group/percentage of studies carried out in 5 

respective climate one. Figure made with GeoMapApp (www.geomapapp.org) / CC BY. 6 
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